太阳能路灯厂家
免费服务热线

Free service

hotline

010-00000000
太阳能路灯厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

透射电子显微镜成像方式与基本构造《资讯》

发布时间:2020-08-17 12:10:08 阅读: 来源:太阳能路灯厂家

2018-06-18 12:50:07来源:贤集网 赵媛

眼睛是人类认识客观世界的第一架“光学仪器”,但它的能力却是有限的,通常认为人眼睛的分辨率为0.1 mm。17世纪初,光学显微镜出现,可以把细小的物体放大到千倍以上,分辨率比人眼睛提高了500 倍以上,这也是人类认识物质世界的一次巨大突破。随着科学技术的不断发展,直接观察到原子是人们一直以来的愿望,电子显微学的出现为人们实现这一夙愿提供了可能。随着电子显微学的不断发展和进步,透射电子显微镜的分辨率已经达到了亚埃量级,电子显微镜已经成为材料学领域不可或缺的表征手段。另外,电子显微学与纳米科学、生物学等的结合,使得电子显微镜的功能日渐扩大,同时它也促进了这些领域的飞速发展。下面贤集网小编来为大家介绍透射电子显微镜成像方式、基本构造、特点、主要性能参数、应用。一起来看看吧!

透射电子显微镜成像方式

电子束穿过样品时会携带有样品的信息,TEM的成像设备使用这些信息来成像。投射透镜将处于正确位置的电子波分布投射在观察系统上。观察到的图像强度,I,在假定成像设备质量很高的情况下,近似的与电子波函数的时间平均幅度成正比。若将从样品射出的电子波函数表示为Ψ,则

不同的成像方法试图通过修改样品射出的电子束的波函数来得到与样品相关的信息。根据前面的等式,可以推出观察到的图像强度依赖于电子波的幅度,同时也依赖于电子波的相位。虽然在电子波幅度较低的时候相位的影响可以忽略不计,但是相位信息仍然非常重要。高分辨率的图像要求样品尽量的薄,电子束的能量尽量的高。因此可以认为电子不会被样品吸收,样品也就无法改变电子波的振幅。由于在这种情况下样品仅仅对波的相位造成影响,这样的样品被称作纯相位物体。纯相位物体对波相位的影响远远超过对波振幅的影响,因此需要复杂的分析来得到观察到的图像强度。例如,为了增加图像的对比度,TEM需要稍稍离开聚焦位置一点。这是由于如果样品不是一个相位物体,和TEM的对比度传输函数卷积以后将会降低图像的对比度。

透射电子显微镜的基本构造

1、电子枪:发射高能电子束,提供光源;

2、聚光镜:将发散的电子束会聚得到平行光源;

3、样品杆:装载需观察的样品;

4、物镜:电镜最关键的部分,起到聚焦成像一次放大的作用;

5、中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式);

6、投影镜:三次放大;

7、荧光屏:将电子信号转化为可见光,供操作者观察;

8、底片盒:传统的底片照相;

9、CCD相机:先进的电子相机,拍照效率比传统底片高很多。

?

透射电子显微镜的特点

1、由于样品制备技术的限制,对大多数生物样品来说,一般只能达到2nm的分辨率。

2、电镜图像的分辨能力不仅取决于电镜本身的分辨率,而且取决于样品结构的反差。

3、电镜所用的光源是电子波,波长在非可见光范围内无颜色反应,所形成的图像是黑白图像,要求图像必须具有一定的反差。

4、生物体组织和细胞成分主要有C\H\O\N等轻元素组成,它们的原子序数较低,电子散射能力弱,相互之间的差别又很小,电镜下的图像反差一般较低。

5、由于电子束的穿透能力较弱,样品必须制成超薄切片。

6、观察面小,载网直接能够为3mm,超薄切片范围为0.3-0.8mm.

7、电子束的强烈照射,易损伤样品,发生变形、升华等,甚至被击穿破裂,可能使观察结构产生假象。

8、观察时电镜镜筒必须保持真空,为了保证样品在真空下不损伤,对样品要求应无水分。因此,不能观察活体的生物样本。

9、生物制样复杂,在步骤繁多的制样过程中,样品容易产生收缩、膨胀、破碎以及内含物

丢失丢失等结构改变。

透射电子显微镜主要性能参数?

1、分辨率?

分辨率是TEM的最主要性能指标,表征电镜显示亚显微组织、结构细节的能力。透射电镜的分辨率分为点分辨率和线分辨率两种。点分辨率能分辨两点之间的最短距离,线分辨率能分辨两条线之间的最短距离,通过拍摄已知晶体的晶格象测定,又称晶格分辨率。透射电镜点分辨率和线分辨率照片如下图所示。

?

2、放大倍数?

透射电镜的放大倍数是指电子图像对于所观察试样区的线性放大率。目前高性能TEM的放大倍数范围为80~100万倍。不仅考虑最高和最低放大倍数,还要考虑是否覆盖低倍到高倍的整个范围。将仪器的最小可分辨距离放大到人眼可分辨距离所需的放大倍数称为有效放大倍数。一般仪器的最大倍数稍大于有效放大倍数。透射电镜的放大倍数可用下面的公式来表示:

其中M为放大倍数,A、B为常数,I中为中间镜激磁电流,单位为mA。以下是对透射电镜放大倍率的几点说明:?

A、人眼分辨本领约0.2mm,光学显微镜约0.2μm。?

B、把0.2μm放大到0.2mm的M是1000倍,是有效放大倍数。?

C、?光学显微镜分辨率在0.2μm时,有效M是1000倍。?

D、光学显微镜的M可以做的更高,但高出部分对提高分辨率没有贡献,仅是让人眼观察舒服。?

3、加速电压?

加速电压是指电子枪阳极相对于阴极灯丝的电压,决定了发射的电子的波长λ。电压越高,电子束对样品的穿透能力越强(厚试样)、分辨率越高、对试样的辐射损伤越小。普通TEM的最高V一般为100kV和200kV,通常所说的V是指可达到的最高加速电压。高分辨透射电子显微镜。

透射电子显微镜的应用

透射电镜具有分辨率高、可与其他技术联用的优点,在材料学、物理、化学和生物学等领域有着广泛地应用。

1、材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。电子显微技术对于新材料的发现也起到了巨大的推动作用,D.Shechtman 借助透射电镜发现了准晶,重新定义了晶体,丰富了材料学、晶体学、凝聚态物理学的内涵,D.Shechtman 也因此获得了2011年诺贝尔化学奖。

2、在物理学领域中,电子全息术能够同时提供电子波的振幅和相位信息,从而使这种先进的显微分析方法在磁场和电场分布等与相位密切相关的研究上得到广泛应用。目前,电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。中国科学院物理研究所的张喆和朱涛等利用高分辨电子显微术和电子全息方法研究了Co 基磁性隧道结退火热处理前后的微观结构和相应势垒层结构的变化,研究结果表明,退火处理可以明显地改善势垒层和顶电极、底电极之间的界面质量,改进势垒本身的结构。

3、在化学领域,原位透射电镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。透射电镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料最常用的表征手段之一。天津大学的杜希文和美国Brookhaven 国家实验室的Houlin L.xin 等用原位透射电镜观察了Co Ni双金属纳米粒子在氧化过程中形貌的变化,充分混合的Co、Ni 合金粒子经过氧化后,Co 和Ni 发生了空间上的部分分离,并在理论上对该现象进行了解释。

4、在生物学领域,X 射线晶体学技术和核磁共振常被用来研究生物大分子的结构,已经能够将蛋白质的位置精度确定到0.2 nm,但是其各有局限。X 射线晶体学技术基于蛋白质晶体,研究的常常是分子的基态结构,而对解析分子的激发态和过渡态无能为力。生物大分子在体内常常发生相互作用并形成复合物而发挥作用,这些复合物的结晶化非常困难。核磁共振虽然能够获得分子在溶液中的结构并且能够研究分子的动态变化,但主要适合用来研究分子量较小的生物大分子。近年来冷冻电镜技术突破了冷冻成像和图像处理瓶颈,发展成为当今结构生物学广泛应用的新兴技术。它可以以快速、高效、简易、高分辨率解析高度复杂的超大生物分子结构,在很大程度上超越了传统的X 射线晶体学技术。清华大学施一公研究组利用酵母细胞内源性蛋白提取获得了性质良好的样品,利用单颗粒冷冻电子显微镜技术,解析了酵母剪接体近原子水平的高分辨率三维结构,阐述了剪接体对信使RNA前体执行剪接的工作机理。

?

上述是贤集网小编为大家介绍的透射电子显微镜成像方式、基本构造、特点、主要性能参数、应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪球差校正透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。利用球差校正电子显微镜还可以对缺陷如位错的核心进行成像,对人们重新认识缺陷对性能的影响提供帮助。可以说从透射电子显微镜的诞生到今天的八十多年来,人们借助透射电镜解决了很多科学难题。透射电镜也在不断发展进步,功能日益全面,性能日益改善,虽然在发展过程中还存在一些问题和挑战,相信在众科研工作者的共同努力下,问题终将解决,透射电镜的各项技术也将进一步发展和突破。 ?

什么样的墙漆环保

芬琳漆

水性漆芬琳